If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2+5x-77=0
a = 11; b = 5; c = -77;
Δ = b2-4ac
Δ = 52-4·11·(-77)
Δ = 3413
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{3413}}{2*11}=\frac{-5-\sqrt{3413}}{22} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{3413}}{2*11}=\frac{-5+\sqrt{3413}}{22} $
| 5–2t=1 | | 1/3x+5/6=3/4x-2 | | 9-z=3 | | 6+8w=8w+6 | | 2=4/x-1 | | 8y-6=-366 | | x+0.196x=6147.60 | | -7–5g=-5g–4 | | m−23.6=58.3 | | 8n+6=8n | | 3+7f–4=8f+5 | | 3x=19=-2 | | 5=g/8 | | 16+v=-15 | | x^2+2x+42=2 | | 7-6(1+4y)=32 | | 3n-6=4 | | 16-4(n+1)=2n | | x/3+12=28 | | (-14)=x(-8) | | 8x-2=7+7x | | 3(2n−1)−2n=21 | | 9n+1=9+10 | | E^19x-1=18 | | v/2+16=34 | | 53n-3n^2-230=0 | | 4x+11+10x+15=180 | | X/3=6+x/5 | | -2a-9-6=34 | | m=4=-12 | | 6=y/4-11 | | 4x+11=10x+15 |